private static Map serviceWeightMap = new HashMap();
static {serviceWeightMap.put("192.168.1.100", 1);serviceWeightMap.put("192.168.1.101", 1); // 权重为4serviceWeightMap.put("192.168.1.102", 4);serviceWeightMap.put("192.168.1.103", 1);serviceWeightMap.put("192.168.1.104", 1); // 权重为3serviceWeightMap.put("192.168.1.105", 3);serviceWeightMap.put("192.168.1.106", 1); // 权重为2serviceWeightMap.put("192.168.1.107", 2);serviceWeightMap.put("192.168.1.108", 1);serviceWeightMap.put("192.168.1.109", 1);serviceWeightMap.put("192.168.1.110", 1);
}
对所有的服务器节点全部按顺序来,将请求按照顺序轮流地分配到各个服务器上,所以适合用于服务器硬件条件基本都相同的情况
private static Integer pos = 0;public static String testRoundRobin() { // 重新创建一个map,避免出现由于服务器上线和下线导致的并发问题Map serverMap = new HashMap();serverMap.putAll(serviceWeightMap);// 取得 IP 地址 listSet keySet = serverMap.keySet();ArrayList keyList = new ArrayList();keyList.addAll(keySet);String server = null;synchronized (pos) {if (pos > keySet.size()) {pos = 0;}server = keyList.get(pos);pos++;}return server;
}
由于 serviceWeightMap 中的地址列表是动态的,随时可能由机器上线、下线或者宕机,因此,为了避免可能出现的并发问题,比如数组越界,通过在方法内新建局部变量 serverMap, 先将域变量拷贝到线程本地,避免被其他线程修改。这样可能会引入新的问题,当被拷贝之后,serviceWeightMap 的修改将无法被 serverMap 感知,也就是说, 在这一轮的选择服务器中,新增服务器或者下线服务器,负载均衡算法中将无法获知。新增比较好处理,而当服务器下线或者宕机时,服务消费者将有可能访问不到不存在的地址。 因此,在服务消费者服务端需要考虑该问题,并且进行相应的容错处理,比如重新发起一次调用
对于当前轮询的位置变量 pos,为了保证服务器选择的顺序性,需要在操作时对其加锁,使得同一时刻只能有一个线程可以修改 pos 的值,否则当 pos 变量被并发修改, 则无法保证服务器选择的顺序性,甚至有可能导致 keyList 数组越界
轮询法的优点在于:试图做到请求转移的绝对均衡,缺点在于:为了做到请求转移的绝对均衡,必须付出相当大的代价,因为为了保证 pos 变量修改的互斥性, 需要引入重量级的悲观锁 synchronized,这将会导致该段轮询代码的并发吞吐量发生明显的下降
那么加权轮询算法无疑就是对各个服务器有了"高低贵贱之分",没办法,服务器的吃力水平不同,只能让那些强悍的机器优先并多处理一些请求,比较弱的机器就让它稍稍压力小一点
public class WeightRoundRobin {private static Integer pos;public static String getServer() {// 重建一个Map,避免服务器的上下线导致的并发问题Map serverMap = new HashMap();serverMap.putAll(IpMap.serverWeightMap);// 取得 Ip 地址 ListSet keySet = serverMap.keySet();Iterator iterator = keySet.iterator();List serverList = new ArrayList();while (iterator.hasNext()) {String server = iterator.next();int weight = serverMap.get(server);for (int i = 0; i < weight; i++)serverList.add(server);}String server = null;synchronized (pos){if (pos > keySet.size())pos = 0;server = serverList.get(pos);pos ++;}return server;}
}
与轮询法类似,只是在获取服务器地址之前增加了一段权重计算的代码,根据权重的大小,将地址重复地增加到服务器地址列表中,权重越大,该服务器每轮所获得的请求数量越多
随机算法也是一种使用场景比较多的负载均衡算法,这种算法基本思想也是很简单的,随机生成一个数字(或者随机挑一个IP地址)出来,然后挑到谁就是谁,当然, 如果随机数是等概况生成的,那时间长了,基本上跟轮询算法没有什么区别,区别最主要的还是在顺序上,随机算法没有那么严格的顺序
public class Random {public static String getServer() {// 重建一个Map,避免服务器的上下线导致的并发问题Map serverMap = new HashMap();serverMap.putAll(IpMap.serverWeightMap);// 取得 Ip 地址 ListSet keySet = serverMap.keySet();ArrayList keyList = new ArrayList();keyList.addAll(keySet);java.util.Random random = new java.util.Random();int randomPos = random.nextInt(keyList.size());return keyList.get(randomPos);}
}
加权随机算法是在随机算法的基础上加了加权的条件,随机法时间长了,基本上跟一般轮询算法就没啥区别了,刚才也说到了,如果服务器的配置都差不多, 可以分配差不多的任务,但是如果服务器吃力能力差异比较大,那水平高的和水平低的服务器都给那么多任务,对于高配置的服务器来说就是有点浪费了, 对于低配置的服务器来说就有点吃不消,所以在这种配置差异性比较大的情况下,加权的工作还是必要的
public class WeightRandom {public static String getServer() {// 重建一个 Map,避免服务器的上下线导致的并发问题Map serverMap = new HashMap();serverMap.putAll(IpMap.serverWeightMap);// 取得 Ip 地址 ListSet keySet = serverMap.keySet();Iterator iterator = keySet.iterator();List serverList = new ArrayList();while (iterator.hasNext()) {String server = iterator.next();int weight = serverMap.get(server);for (int i = 0; i < weight; i++)serverList.add(server);}java.util.Random random = new java.util.Random();int randomPos = random.nextInt(serverList.size());return serverList.get(randomPos);}
}
那个服务器的连接数少,就分配给哪个服务器新的请求,合情合理,这种算法的缺点就是,当一个比较弱的服务器和一个比较彪悍的服务器,本来就是前者连接的要少, 后者要大,如果非要谁的少新请求分配给谁的话,那就是弱服务器的连接要等于强服务器的连接,无疑这样会让弱服务器吃不消,或者造成强服务器的浪费, 所以这里还可以使用加权的方法解决这样的问题------加权最小连接法
源地址哈希法可以把客户端的 IP 地址拿出来,然后计算出 IP 地址的 hash 值,根据 hash 值映射到服务器上
public class Hash {public static String getServer() {// 重建一个 Map,避免服务器的上下线导致的并发问题Map serverMap = new HashMap();serverMap.putAll(IpMap.serverWeightMap);// 取得 Ip 地址 ListSet keySet = serverMap.keySet();ArrayList keyList = new ArrayList();keyList.addAll(keySet);// 在 Web 应用中可通过 HttpServlet 的 getRemoteIp 方法获取String remoteIp = "127.0.0.1";int hashCode = remoteIp.hashCode();int serverListSize = keyList.size();int serverPos = hashCode % serverListSize;return keyList.get(serverPos);}
}
源地址哈希法的优点在于:保证了相同客户端IP地址将会被哈希到同一台后端服务器,直到后端服务器列表变更。根据此特性可以在服务消费者与服务提供者之间建立有状态的 session 会话
源地址哈希算法的缺点在于:除非集群中服务器的非常稳定,基本不会上下线,否则一旦有服务器上线、下线,那么通过源地址哈希算法路由到的服务器是服务器上线、下线前路由到的服务器的概率非常低,如果是 session 则取不到 session,如果是缓存则可能引发 “雪崩”