[图神经网络]图卷积神经网络--GCN
创始人
2025-06-01 03:43:32
0

一、消息传递

        由于图具有“变换不变性”(即图的空间结构改变不会影响图的性状),故不能直接将其输入卷积神经网络。一般采用消息传递(Message pass)的方式来处理。

        消息传递机制通过局部邻域构建计算图实现,即某个节点的属性由其邻居节点来决定。汇聚这些邻居节点信息的工作由神经网络完成,不用人为干预。其形式如下例:

        每个节点都可构建属于自己的计算图,计算图可以表征一个其结构功能角色。 在计算过程中,每个计算图即为一个单独样本。

        需要注意的是,图神经网络的层数并不是神经网络的层数,而是计算图的层数。图神经网络的层数=计算图的层数=图中目标节点的邻居阶数。每一层的节点共享一套计算权重。

                        

         图神经网络的层数 k 可以视为卷积神经网络中的感受野。若 k 过大可能导致过平滑(所有节点输出同一张图)

二、图卷积神经网络

        1.计算单元

                图卷积神经网络基于消息传递方式,一般的计算方法是将邻居节点的属性特征逐元素求平均(与顺序无关,也可以是求最大值/求和),再将这个向量输入到神经元中

        2.数学表示

                k+1层 v 的嵌入是第k层v节点的邻域u计算(邻域u中的节点求和除以节点v连接数),其公式可以写作:

                        h^{(k+1)}_v=\sigma(\omega _k\sum \frac{h^k _u}{N(v)})       式中 \sigma为激活函数,\omega_k为权重

                其中,节点v的第0阶属性特征就是其本身:h_v^{(0)}=x_v

                神经网络输出的嵌入向量为z_v = h_v^K,K为网络的层数

        3.矩阵表示

                ①将k层所有节点的嵌入都记为H^{(k)}H^{(k)}=[h_1^{(k)}...h_{|v|}^{(k)}]^T,即下图中矩阵中的一行

                ②将此矩阵左乘一个邻接矩阵A_v : \sum_{u \in N_v}h_u^{(k)}=A_vH^{(k)} 可挑选出节点v的邻域节点(对应上式中的求和过程)

                ③找到一个矩阵D_v=Deg(v)=|N(v)|,该矩阵为一个由节点连接数构成的对角矩阵,表现为:

                         其逆矩阵即为连接数的倒数:D_v^{-1}=\frac{1}{|N(v)|}

                经过上述步骤,式\sum \frac{h^k _u}{N(v)}即可表示为D^{-1}AH^{(k)}

                但是这样计算的话,由于D^{-1}造成节点v仅会考虑自己的连接数而忽视对方的连接数(不考虑连接的质量,对全部渠道来得信息强行求平均), 可以将式子改进D^{-1}A --> D^{-1}AD^{-1},这样得到的结果是一个对称矩阵,既考虑了自身的连接数也考虑了对方的连接数。

                可改进后的向量幅值会减小,其特征值值域为(-1,1)。对于这种现象,可以继续对式子进行改进D^{-1}AD^{-1} --> D^{-\frac{1}{2}}AD^{-\frac{1}{2}},这样处理后最大特征值等于1。

                最后将此矩阵记为:\tilde{A}=D^{-\frac{1}{2}}AD^{-\frac{1}{2}},在此矩阵中,若两个节点i,j存在连接,则其在矩阵中为\tilde{A}=\frac{1}{\sqrt{d_i}\sqrt{d_j}},可以表示其连接权重(其中d_id_j是节点i和节点j的连接数)

                         矩阵\tilde{A}还可以用来计算拉普拉斯矩阵\xi = 1 - \tilde{A}

                则式子可以列为:h^{(k+1)}_v=\sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}),该式即可表示一层GCN;其中可学习参数为权重w^{(l)}

        4.计算图的改进

                上述方式(通过相邻节点描述本节点无法反映节点自身的情况),改进方法为:为每个节点加上指向自己的连接

                 这样改进后,邻接矩阵\tilde{A}即变为\tilde{A}=A+I(原矩阵加上单位阵,对角线全部为1)

                最终神经网络表达式H^{(k+1)}_v=\sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})可以写作:

                        H^K_i=\sigma(\sum \frac{\tilde{A_{ij}}}{\sqrt{\tilde{D_{ii}}}\tilde{D_{jj}} }H_j^{k-1}W^k)(一个式子包含了原权重矩阵和单位阵)

                也可拆分写作:

                        H^k_i=\sigma(\sum\frac{A_{ij}}{\sqrt{\tilde{D_{ii}}}\tilde{D_{jj}} }H^{k-1}_jW^k+\frac{1}{\tilde{D_i}}H^{k-1}_iW^k)(前面是对原权重矩阵的变换,后面是对单位矩阵的变换)

                进一步改进则可使用两套权重(汇聚节点信息一套,自循环节点信息一套),写作:

                        H^{(k+1)}_v=\sigma(W_k\sum\frac{h_u^{(k)}}{|N(v)|}+B_kh_v^{(k)})

                        且当B_k=1时,后式变为恒等映射,即为残差连接。

        !!!最终的矩阵简化形式为:H^{(k+1)}=\sigma(\tilde{A}H^{(k)}W_k^T+H^{(k)}B_k^T);其中\tilde{A}=D^{-\frac{1}{2}}AD^{-\frac{1}{2}}

三、GCN的训练

        1.监督学习

                损失函数:min\, l(y,f(z_v)),其中f为分类/回归预测头,y为节点标注信息

                交叉熵损失函数:l=\sum y_vlog(\sigma(z_v^T\theta ))+(1-y_v))log(1-\sigma(z_v^T\theta))

                GCN的输入是图结构,输出也是图结构,但输出的图中的节点嵌入了语义信息;输出结构具备:低维、连续、稠密的特点。

                 嵌入向量可以输入分类头进行分类,将其映射在二维空间上即可发现不同类别的节点在迭代中被分得越来越开

---->​​​​​​​

        2.无监督/自检断学习

                类似于Deepwalk/Node2vec,利用图自身的连接结构,迭代目的是让图中相连的两个结点嵌入的向量尽可能接近

                损失函数:l=\sum CE(y_{u,v},DEC(z_u,z_v)),当y_{u,v}=1时表示两个结点uv相似。

                一般采用“编码器--解码器”架构,由编码器将图嵌入到向量,再由解码器计算两个向量的相似度。

四、GCN的优势

        相较于传统的基于随机游走的机器学习而言

                ①GCN所有计算图共享权重参数量更小

                ②GCN为归纳式学习,拥有较强的泛化能力(可以泛化到新节点乃至新图--迁移学习)

                ③利用了节点的属性特征、结构功能角色和标注信息

                ④拟合学习能力强,得到的嵌入向量质量较高

五、对比CNN、Transformer

        1.与CNN对比

                CNN可以视为一个2层的GCN,卷积汇总了9个邻居节点和目标节点的信息,其数学式亦可被写成:h^{(l+1)}=\sigma(\sum W_l^uh_u^P(l)+B_lh_v^{(l)}),CNN可以被视为一个固定邻域、固定顺序的GCN。

                 但两者之间有以下不同

                        ①CNN不具备变换不变性,打乱像素点的顺序会影响网络的输出。

                        ②GCN的卷积核权重由\tilde{A}预定义,不需要学习。而CNN的权重需要学习得来

        2.与Transformer对比

                Transformer本身是自注意力机制,其训练的目的是让一个序列中的元素之间互相影响。

                 Transformer可以被视为一个全连接词图上的GCN。

相关内容

热门资讯

“强实名”仍一票难求?遏制技术... 暑期来临,演唱会、音乐节、话剧等演出活动热度飙升。无论手速多快,总是一票难求,让众多消费者叫苦不迭。...
上证红利回报指数上涨0.83%... 金融界7月21日消息,上证指数高开高走,上证红利回报指数 (上红回报,H50019)上涨0.83%,...
为啥股票与基金的走势相反? 虚位以待! 平姐姐摄于毛里求斯网红酒店 昨天的文章,标题就很明确,那就是《准备出击》,在半年报不少上...
美加密货币相关法案落地引发三连... 当地时间7月18日,美国总统特朗普在白宫正式签署《指导与建立美国稳定币国家创新法案》(简称《天才法案...
股市必读:湖南黄金(00215... 截至2025年7月21日收盘,湖南黄金(002155)报收于18.33元,上涨2.57%,换手率3....
四川发布六大红色旅游新线路 四川发布六大红色旅游新线路 “锦绣天府·安逸四川”之红色旅游央地媒体联动采访启动 “锦绣天府·安...
北交所上市公司中航泰达大宗交易... 每经讯,2025年7月21日,北交所上市公司中航泰达(836263,收盘价:16.11元)发生一笔大...
金价突然猛拉,重回3400美元... 记者丨叶麦穗 编辑丨曾芳 金珊 7月21日晚,现货黄金突然猛拉大涨,截至22:40,涨超1.5%,站...
嘉实港股互联网产业核心资产混合... AI基金嘉实港股互联网产业核心资产混合A(011924)披露2025年二季报,第二季度基金利润532...
中信证券:特朗普“唱白脸”+贝... 来源:市场资讯 中信证券研究 文|李翀 崔嵘 韦昕澄 贾天楚 当地时间7月14日,美国总统特朗普表示...
机器人ETF易方达(15953... 截至收盘,国证机器人产业指数上涨2.1%,中证装备产业指数上涨1.9%,中证军工指数上涨0.9%,中...
北京工商大学教授吕来明:整治“... 今年以来,治理“内卷式”竞争引发高度关注。从水泥、光伏、汽车到电商,多个领域吹响“反内卷”的号角。 ...
民航局:加快新兴市场布局,提升... 7月21日,在国新办举行的“高质量完成‘十四五’规划”系列主题新闻发布会上,中国民航局局长宋志勇介绍...
二季度券商北交所、新三板业务执... 头部券商优势地位保持稳固,多家中小券商排名大幅跃升 本报记者 于宏 7月18日晚间,北交所、全国股转...
股票行情快报:美新科技(301... 证券之星消息,截至2025年7月21日收盘,美新科技(301588)报收于19.0元,上涨1.39%...
破解中小企业融资难!产业数字金... “中国经济的核心在于产业经济,产业经济离不开金融,产业经济、产业金融都离不开数字技术的赋能,中小企业...
京东美团“暗战”具身智能,战火... 在科技赛道的激烈角逐中,具身智能正成为巨头们争夺的新焦点。王兴之后,刘强东也在具身智能领域强势出击。...
“未来已来”指数涨跌不一,关注... 截至收盘,国证机器人产业指数上涨2.1%,中证新能源指数上涨1.5%,中证人工智能主题指数下跌0.0...
“未来能源”指数上涨,关注新能... 截至收盘,中证上海环交所碳中和指数上涨1.9%,中证光伏产业指数上涨1.6%,中证新能源指数上涨1....