H0:μ=μ0,H1:μ≠μ0H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 H0:μ=μ0,H1:μ=μ0
U=xˉ−μ0σn∼N(0,1)U = \frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) U=nσxˉ−μ0∼N(0,1)
根据定义,对于一个给定的置信区间α\alphaα,我们可以在正态分布两端取到分位点±uα2\pm u_\frac{\alpha}{2}±u2α,既
P{∣U∣≥uα2}=αP\left\{ \left| U \right| \geq u_\frac{\alpha}{2} \right\}= \alpha P{∣U∣≥u2α}=α
如果统计量的值u,∣u∣≥uα2\left| u \right| \geq u_\frac{\alpha}{2}∣u∣≥u2α,则意味着发生了小概率事件,因此原假设H0H_0H0为小概率事件,拒绝原假设
故拒绝域为
W1={∣u∣≥uα2}W_1 = \left \{ \left| u \right| \geq u_\frac{\alpha}{2} \right \} W1={∣u∣≥u2α}
H0:μ=μ0,H1:μ≠μ0H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 H0:μ=μ0,H1:μ=μ0
T=xˉ−μ0Sn∼t(n−1)T = \frac{\bar{x}-\mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1) T=nSxˉ−μ0∼t(n−1)
S2S^2S2为α2\alpha^2α2的无偏估计
W1={∣t∣≥tα2(n−1)}W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n-1) \right \} W1={∣t∣≥t2α(n−1)}
t分布和正态分布的曲线类似,所以拒绝域的计算方式也类似,不同的是方差未知我们只能用S2S^2S2来代替α2\alpha^2α2
H0:σ2=σ02,H1:σ2≠σ02H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2 H0:σ2=σ02,H1:σ2=σ02
χ2=(n−1)S2σ2∼χ2(n−1)\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) χ2=σ2(n−1)S2∼χ2(n−1)
W1={χ2≤χ1−α22(n−1)或者χ2≥χα22(n−1)}W_1 = \left \{ \chi^2 \leq \chi^2_{1-\frac{\alpha}{2}}(n-1) 或者 \chi^2 \geq \chi^2_\frac{\alpha}{2}(n-1) \right \} W1={χ2≤χ1−2α2(n−1)或者χ2≥χ2α2(n−1)}
标准卡方分布χ2\chi^2χ2分布的左右两边不对称,所以将两边分开
H0:μ=μ0,H1:μ>μ0(或μ<μ0)H_0: \mu = \mu_0, H_1: \mu > \mu_0 (或 \mu < \mu_0) H0:μ=μ0,H1:μ>μ0(或μ<μ0)
U=xˉ−μ0σn∼N(0,1)U = \frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) U=nσxˉ−μ0∼N(0,1)
根据定义,对于一个给定的置信区间α\alphaα,我们可以在正态分布取到单个分位点uαu_\alphauα,既
P{U>uα}=α(或P{U<−uα}=α)P\left\{ U > u_\alpha \right\}= \alpha (或P\left\{ U < -u_\alpha \right\}= \alpha ) P{U>uα}=α(或P{U<−uα}=α)
如果统计量的值u,u>uα(或u<−uα)u > u_\alpha(或u < -u_\alpha)u>uα(或u<−uα),则意味着发生了小概率事件,因此原假设H0H_0H0为小概率事件,拒绝原假设
拒绝域为
W1={u>uα}(或W1={u<−uα})W_1 = \left \{ u > u_\alpha \right \}(或W_1 = \left \{ u < -u_\alpha \right \}) W1={u>uα}(或W1={u<−uα})
H0:μ=μ0,H1:μ>μ0(或μ<μ0)H_0: \mu = \mu_0, H_1: \mu > \mu_0(或\mu < \mu_0) H0:μ=μ0,H1:μ>μ0(或μ<μ0)
T=xˉ−μ0Sn∼t(n−1)T = \frac{\bar{x}-\mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1) T=nSxˉ−μ0∼t(n−1)
S2S^2S2为α2\alpha^2α2的无偏估计
W1={t>tα(n−1)}(或W1={t<−tα(n−1)})W_1 = \left \{ t > t_\alpha(n-1) \right \}(或W_1 = \left \{ t < -t_\alpha(n-1) \right \}) W1={t>tα(n−1)}(或W1={t<−tα(n−1)})
t分布和正态分布的曲线类似,所以拒绝域的计算方式也类似,不同的是方差未知我们只能用S2S^2S2来代替α2\alpha^2α2
H0:σ2=σ02,H1:σ2>σ02(或σ2<σ02)H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 > \sigma_0^2(或\sigma^2 < \sigma_0^2) H0:σ2=σ02,H1:σ2>σ02(或σ2<σ02)
χ2=(n−1)S2σ2∼χ2(n−1)\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) χ2=σ2(n−1)S2∼χ2(n−1)
W1={χ2>χα2(n−1)}(或W1={χ2<χ1−α2(n−1)})W_1 = \left \{ \chi^2 > \chi^2_\alpha(n-1) \right \} (或W_1 = \left \{ \chi^2 < \chi^2_{1-\alpha}(n-1) \right \}) W1={χ2>χα2(n−1)}(或W1={χ2<χ1−α2(n−1)})
设X1,X2,X3,...Xn1X_1,X_2,X_3,...X_{n_1}X1,X2,X3,...Xn1为总体N(μ1,σ12)N(\mu_1, \sigma_1^2)N(μ1,σ12)的样本,
设Y1,Y2,Y3,...Yn2Y_1,Y_2,Y_3,...Y_{n_2}Y1,Y2,Y3,...Yn2为总体N(μ2,σ22)N(\mu_2, \sigma_2^2)N(μ2,σ22)的样本
H0:μ1=μ2,H1:μ1≠μ2H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
U=xˉ−yˉσ12n1+σ22n2∼N(0,1)U = \frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1) U=n1σ12+n2σ22xˉ−yˉ∼N(0,1)
虽然统计量的计算方程变了,但拒绝域形式不变
W1={∣u∣≥uα2}W_1 = \left \{ \left| u \right| \geq u_\frac{\alpha}{2} \right \} W1={∣u∣≥u2α}
H0:μ1=μ2,H1:μ1≠μ2H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
T=xˉ−yˉSw1n1+1n2∼t(n1+n2−2)其中Sw=(n1−1)S12+(n2−1)S22n1+n2−2T = \frac{\bar{x}-\bar{y}}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1+n_2-2) 其中 S_w = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2} T=Swn11+n21xˉ−yˉ∼t(n1+n2−2)其中Sw=n1+n2−2(n1−1)S12+(n2−1)S22
S2S^2S2为α2\alpha^2α2的无偏估计
W1={∣t∣≥tα2(n1+n2−2)}W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n_1+n_2-2) \right \} W1={∣t∣≥t2α(n1+n2−2)}
H0:μ1=μ2,H1:μ1≠μ2H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
T=xˉ−yˉS1n1+S2n2∼t(f)其中f=(S12n1+S22n2)2(S12/n1)2n1−1+(S22/n2)2n2−1T = \frac{\bar{x}-\bar{y}}{\sqrt{\frac{S_1}{n_1} + \frac{S_2}{n_2}}} \sim t(f) 其中 f = \frac{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})^2}{\frac{(S_1^2/n_1)^2}{n_1-1} + \frac{(S_2^2/n_2)^2}{n_2-1}} T=n1S1+n2S2xˉ−yˉ∼t(f)其中f=n1−1(S12/n1)2+n2−1(S22/n2)2(n1S12+n2S22)2
S2S^2S2为α2\alpha^2α2的无偏估计
W1={∣t∣≥tα2(n1+n2−2)}W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n_1+n_2-2) \right \} W1={∣t∣≥t2α(n1+n2−2)}
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用秩和检验等方法
H0:σ12=σ22,H1:σ12≠σ22H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2 H0:σ12=σ22,H1:σ12=σ22
F=S12S22∼F(n1−1,n2−1)F = \frac{S_1^2}{S_2^2} \sim F(n_1-1, n_2-1) F=S22S12∼F(n1−1,n2−1)
W1={f≥Fα2(n1−1,n2−1)或者f≤F1−α2(n1−1,n2−1)}W_1 = \left \{ f \geq F_\frac{\alpha}{2}(n_1-1, n_2-1) 或者 f \leq F_{1-\frac{\alpha}{2}}(n_1-1, n_2-1) \right \} W1={f≥F2α(n1−1,n2−1)或者f≤F1−2α(n1−1,n2−1)}
学必求其心得,业必贵其专精