目录
ID3算法
C4.5算法
CART树
定义:在决策树各个结点上应用信息增益准则选择特征,递归的构建决策树。该决策树是多分支分类。
信息增益
意义:给定特征X的条件下,使得类别Y的信息的不确定性减少的程度。取值越大越好。
定义:集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D/A)之差。
缺点
定义:C4.5算法与ID3算法类似,C4.5算法使用信息增益比来选择特征。C4.5算法先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择信息增益比最大的属性。该决策树是多分支分类。
信息增益比
定义:在信息增益的基础上,再除以H(D);取值越大越好。
连续属性的划分:采用"二分"法对连续属性进行离散化,划分点的选取可选使信息增益最大化的划分点。例:16个连续属性值选15个划分点。
缺点
CART树既可以用于分类,也可用于回归。CART树属于二叉树。
回归树
定义:使用平方误差来构建决策树,使用min(J){min(c1)sum(y-c1)^2+min(c2)sum(y-c2)^2}来选择最优划分变量和最优划分点。
预测:选择叶子节点的均值或者中位数作为当前节点的预测类别(通常都是均值)
分类树
定义:使用基尼系数选择最优特征。
基尼系数:
定义:从数据集中随机抽取两个样本,其类别标记不一致的概率。基尼系数越小,则样本集合的不确定性越小。
公式:1-sum(K){P(k)*P(k)},P(k)是属于第k个类别的概率,共有K个类别。
预测:选择叶子节点里概率最大的类别作为当前节点的预测类别;选择叶子节点中所有样本所属类别最多的那一类。
缺点:适合大样本
预剪枝:
过程:进行分支前,计算验证机准确率;分支后,计算验证机准确率,若变大,则进行分支,反之。
缺点:欠拟合风险较高。
后剪枝:
过程:当前决策树计算非叶子节点再验证集上的准确率,讲该非叶子节点替换为叶子节点后,计算验证机的准确率,若变大,则进行剪枝,反之。
决策树对缺失值的处理
树模型的优缺点
优点
缺点
树模型能够处理缺失值吗?(ID3、c4.5、cart、rf到底是如何处理缺失值的? - 知乎)
1.ID3不能处理
2.C4.5的处理方式:概率权重思想
3.CART中可用surrogate splits(替代划分)来处理
对于sklearn库来说,是不能的,需要填充;而对于xgboost这种是可以的。
预测截断,遇到特征有缺失情况,如何处理?
样本默认分到右子树。