SpringBoot中解决Redis的缓存穿透、缓存击穿、缓存雪崩案例
创始人
2025-06-01 03:21:28
0

缓存穿透

什么是缓存穿透 ?

缓存穿透指的是一个缓存系统无法缓存某个查询的数据,从而导致这个查询每一次都要访问数据库。

常见的Redis缓存穿透场景包括:

  1. 查询一个不存在的数据:攻击者可能会发送一些无效的查询来触发缓存穿透。

  2. 查询一些非常热门的数据:如果一个数据被访问的非常频繁,那么可能会导致缓存系统无法处理这些请求,从而造成缓存穿透。

  3. 查询一些异常数据:这种情况通常发生在数据服务出现故障或异常时,从而造成缓存系统无法访问相关数据,从而导致缓存穿透。

如何解决 ?

解决方案:使用Guava在内存中维护一个布隆过滤器。

  1. 添加Guava和Redis依赖:

com.google.guavaguava29.0-jre
org.springframework.bootspring-boot-starter-data-redis
  1. 创建一个BloomFilterUtil类,用于在缓存中维护Bloom Filter。

public class BloomFilterUtil {// 布隆过滤器的预计容量private static final int expectedInsertions = 1000000;// 布隆过滤器误判率private static final double fpp = 0.001;private static BloomFilter bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.defaultCharset()), expectedInsertions, fpp);/*** 向Bloom Filter中添加元素*/public static void add(String key){bloomFilter.put(key);}/*** 判断元素是否存在于Bloom Filter中*/public static boolean mightContain(String key){return bloomFilter.mightContain(key);}
}
  1. 在Controller中查询数据时,先根据请求参数进行Bloom Filter的过滤

@Autowired
private RedisTemplate redisTemplate;@GetMapping("/user/{id}")
public User getUserById(@PathVariable Long id){// 先从布隆过滤器中判断此id是否存在if(!BloomFilterUtil.mightContain(id.toString())){return null;}// 查询缓存数据String userKey = "user_"+id.toString();User user = (User) redisTemplate.opsForValue().get(userKey);if(user == null){// 查询数据库user = userRepository.findById(id).orElse(null);if(user != null){// 将查询到的数据加入缓存redisTemplate.opsForValue().set(userKey, user, 300, TimeUnit.SECONDS);}else{// 查询结果为空,将请求记录下来,并在布隆过滤器中添加BloomFilterUtil.add(id.toString());}}return user;
}

缓存击穿 

什么是缓存击穿 

       缓存击穿指的是在一些高并发访问下,一个热点数据从缓存中不存在,每次请求都要直接查询数据库,从而导致数据库压力过大,并且系统性能下降的现象。

缓存击穿的原因通常有以下几种:

  1. 缓存中不存在所需的热点数据:当系统中某个热点数据需要被频繁访问时,如果这个热点数据最开始没有被缓存,那么就会导致系统每次请求都需要直接查询数据库,造成数据库负担。

  2. 缓存的热点数据过期:当一个热点数据过期并需要重新缓存时,如果此时有大量请求,那么就会导致所有请求都要直接查询数据库。

如何解决 :

主要思路 : 在遇到缓存击穿问题时,我们可以在查询数据库之前,先判断一下缓存中是否已有数据,如果没有数据则使用Redis的单线程特性,先查询数据库然后将数据写入缓存中。

  1. 添加Redis依赖

org.springframework.bootspring-boot-starter-data-redis
  1. 在Controller中查询数据时,先从缓存中查询数据,如果缓存中无数据则进行锁操作

@Autowired
private RedisTemplate redisTemplate;@GetMapping("/user/{id}")
public User getUserById(@PathVariable Long id){// 先从缓存中获取值String userKey = "user_"+id.toString();User user = (User) redisTemplate.opsForValue().get(userKey);if(user == null){// 查询数据库之前加锁String lockKey = "lock_user_"+id.toString();String lockValue = UUID.randomUUID().toString();try{Boolean lockResult = redisTemplate.opsForValue().setIfAbsent(lockKey, lockValue, 60, TimeUnit.SECONDS);if(lockResult != null && lockResult){// 查询数据库user = userRepository.findById(id).orElse(null);if(user != null){// 将查询到的数据加入缓存redisTemplate.opsForValue().set(userKey, user, 300, TimeUnit.SECONDS);}}}finally{// 释放锁if(lockValue.equals(redisTemplate.opsForValue().get(lockKey))){redisTemplate.delete(lockKey);}}}return user;
}

 缓存雪崩

什么是缓存雪崩

指缓存中大量数据的失效时间集中在某一个时间段,导致在这个时间段内缓存失效并额外请求数据库查询数据的请求大量增加,从而对数据库造成极大的压力和负荷。

常见的Redis缓存雪崩场景包括:

  1. 缓存服务器宕机:当缓存服务器宕机或重启时,大量的访问请求将直接命中数据库,并在同一时间段内导致大量的数据库查询请求,从而将数据库压力大幅提高。

  2. 缓存数据同时失效:在某个特定时间点,缓存中大量数据的失效时间集中在一起,这些数据会在同一时间段失效,并且这些数据被高频访问,将导致大量的访问请求去查询数据库。

  3. 缓存中数据过期时间设计不合理:当缓存中的数据有效时间过短,且数据集中在同一时期失效时,就容易导致大量的请求直接查询数据库,加剧数据库压力。

  4. 波动式的访问过程:当数据的访问存在波动式特征时,例如输出某些活动物品或促销商品时,将会带来高频的查询请求访问,导致缓存大量失效并产生缓存雪崩。

如何解决

在遇到缓存雪崩时,我们可以使用两种方法:一种是将缓存过期时间分散开,即为不同的数据设置不同的过期时间;另一种是使用Redis的多级缓存架构,通过增加一层代理层来解决。具体步骤如下:

  1. 添加相关依赖

org.springframework.bootspring-boot-starter-data-redis

net.sf.ehcacheehcache2.10.6
  1. 在application.properties中配置Ehcache缓存

spring.cache.type=ehcache
  1. 创建一个CacheConfig类,用于配置Ehcache:

@Configuration
@EnableCaching
public class CacheConfig {@Beanpublic EhCacheCacheManager ehCacheCacheManager(CacheManager cm){return new EhCacheCacheManager(cm);}@Beanpublic CacheManager ehCacheManager(){EhCacheManagerFactoryBean cmfb = new EhCacheManagerFactoryBean();cmfb.setConfigLocation(new ClassPathResource("ehcache.xml"));cmfb.setShared(true);return cmfb.getObject();}
}
  1. 在ehcache.xml中添加缓存配置


  1. 在Controller中查询数据时,先从Ehcache缓存中获取,如果缓存中无数据则再从Redis缓存中获取数据。

@Autowired
private RedisTemplate redisTemplate;@Autowired
private CacheManager ehCacheManager;@GetMapping("/user/{id}")
@Cacheable(value = "userCache", key = "#id")
public User getUserById(@PathVariable Long id){// 先从Ehcache缓存中获取String userKey = "user_"+id.toString();User user = (User) ehCacheManager.getCache("userCache").get(userKey).get();if(user == null){// 再从Redis缓存中获取user = (User) redisTemplate.opsForValue().get(userKey);if(user != null){ehCacheManager.getCache("userCache").put(userKey, user);}}return user;
}

相关内容

热门资讯

“强实名”仍一票难求?遏制技术... 暑期来临,演唱会、音乐节、话剧等演出活动热度飙升。无论手速多快,总是一票难求,让众多消费者叫苦不迭。...
上证红利回报指数上涨0.83%... 金融界7月21日消息,上证指数高开高走,上证红利回报指数 (上红回报,H50019)上涨0.83%,...
为啥股票与基金的走势相反? 虚位以待! 平姐姐摄于毛里求斯网红酒店 昨天的文章,标题就很明确,那就是《准备出击》,在半年报不少上...
美加密货币相关法案落地引发三连... 当地时间7月18日,美国总统特朗普在白宫正式签署《指导与建立美国稳定币国家创新法案》(简称《天才法案...
股市必读:湖南黄金(00215... 截至2025年7月21日收盘,湖南黄金(002155)报收于18.33元,上涨2.57%,换手率3....
四川发布六大红色旅游新线路 四川发布六大红色旅游新线路 “锦绣天府·安逸四川”之红色旅游央地媒体联动采访启动 “锦绣天府·安...
北交所上市公司中航泰达大宗交易... 每经讯,2025年7月21日,北交所上市公司中航泰达(836263,收盘价:16.11元)发生一笔大...
金价突然猛拉,重回3400美元... 记者丨叶麦穗 编辑丨曾芳 金珊 7月21日晚,现货黄金突然猛拉大涨,截至22:40,涨超1.5%,站...
嘉实港股互联网产业核心资产混合... AI基金嘉实港股互联网产业核心资产混合A(011924)披露2025年二季报,第二季度基金利润532...
中信证券:特朗普“唱白脸”+贝... 来源:市场资讯 中信证券研究 文|李翀 崔嵘 韦昕澄 贾天楚 当地时间7月14日,美国总统特朗普表示...
机器人ETF易方达(15953... 截至收盘,国证机器人产业指数上涨2.1%,中证装备产业指数上涨1.9%,中证军工指数上涨0.9%,中...
北京工商大学教授吕来明:整治“... 今年以来,治理“内卷式”竞争引发高度关注。从水泥、光伏、汽车到电商,多个领域吹响“反内卷”的号角。 ...
民航局:加快新兴市场布局,提升... 7月21日,在国新办举行的“高质量完成‘十四五’规划”系列主题新闻发布会上,中国民航局局长宋志勇介绍...
二季度券商北交所、新三板业务执... 头部券商优势地位保持稳固,多家中小券商排名大幅跃升 本报记者 于宏 7月18日晚间,北交所、全国股转...
股票行情快报:美新科技(301... 证券之星消息,截至2025年7月21日收盘,美新科技(301588)报收于19.0元,上涨1.39%...
破解中小企业融资难!产业数字金... “中国经济的核心在于产业经济,产业经济离不开金融,产业经济、产业金融都离不开数字技术的赋能,中小企业...
京东美团“暗战”具身智能,战火... 在科技赛道的激烈角逐中,具身智能正成为巨头们争夺的新焦点。王兴之后,刘强东也在具身智能领域强势出击。...
“未来已来”指数涨跌不一,关注... 截至收盘,国证机器人产业指数上涨2.1%,中证新能源指数上涨1.5%,中证人工智能主题指数下跌0.0...
“未来能源”指数上涨,关注新能... 截至收盘,中证上海环交所碳中和指数上涨1.9%,中证光伏产业指数上涨1.6%,中证新能源指数上涨1....